
IBIS-AMI Time-Domain Reference Flow

–James Zhou, QLogic Corp.
Presented at IBIS Quality Task Group

Aug. 16, 2011

1

Background and Objectives

• The subject of IBIS-AMI cookbook was raised by Mike
LaBonte, Chairman of IBIS Quality Task Group, during
the Aug 9, 2011 teleconference.

• The AR was to create a “starter” presentation
summarizing the current status of IBIS-AMI reference
flows and modeling approaches for the purpose of
exploring end-user interests and concerns on IBIS-AMI.

• With the end goal being to create materials for end-
user education and training, the feedbacks and
comments generated during this process may also help
to identify issues in the Specification requiring
clarification or modification.

• This presentation only covers IBIS-AMI time-domain
reference flow.

2

Beginning Questions

• Some “typical” questions that an end-user
might ask about IBIS-AMI modeling:

– Locations of AMI and analog data

– Navigation of IBIS-AMI analysis flows

– Engineering and mathematical (vs. programmatic)
definitions of IBIS-AMI functions (AMI_Init,
AMI_Getwave) and quantities

– Assumptions made in the IBIS-AMI models and
analysis flow

– Mandatory vs. optional features, parameters and
operations

3

AMI Reference Flow – Brief History

• BIRD 104.1, (10/2007)
– First public proposal of IBIS-AMI

• BIRD 107.1, and IBIS Specification 5.0, (05/2008,
08/2008)
– Introduced Use_Init_Output to solve the double counting

issue when filtering exist in both AMI_Init and
AMI_Getwave functions

– Added dedicated section to describe reference flow

• BIRD 120.1 (04/2011)
– Deprecated Use_Init_Output
– Revised reference flow section to separate statistical and

time-domain flows
– Corrected inconsistencies in IBIS 5.0 flow for NLTV systems

4

Reference Flow – IBIS 5.0

TX EQ
TX

Analog
TX pkg

Channel
Interconnect

RX pkg
RX

Analog
RX EQ,

CDR

hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

x(t) y(t)

y(t)x(t)

Step 1: h1(t) = hAC(t)

Step 2a: h2a(t) = AMI_InitTX[h1(t)] = hTEI(t)*hAC(t) (Tx Use_Init_Output = TRUE)
Step 2b: h2b(t) = h1(t) = hAC(t) (Tx Use_Init_Output = FALSE)

• hAC(t) is the end-to-end analog channel impulse response

• b(t)*p(t) is the input waveform to Tx AMI block

• [Note] Naming conventions for impulse and AMI_GetWave functions in this
presentation follow that of DAC 2009 IBIS Summit Presentation by W. Katz

Step 3a: h3a(t) = AMI_InitRX[h2(t)] = hREI(t)*h2(t) (Rx Use_Init_Output = TRUE)
Step 3b: h3b(t) = h2(t) (Rx Use_Init_Output = FALSE)

Step 4: h4(t) = h3(t) *b(t)*p(t)

5

Reference Flow – IBIS 5.0

Step 5a: h5a(t) = AMI_GetWaveTX[h4(t)] (Tx GetWave_Exists = TRUE)
Step 5b: h5b(t) = h4(t) (Tx GetWave_Exists = FALSE)

• It is not obvious how to map this process to system equations
relating output to input

• Init_Returns_Impulse plays no role in the flow

Step 7: y(t) = h6(t)

Step 6a: h6a(t) = AMI_GetWaveRX[h5(t)] (Rx GetWave_Exists = TRUE)
Step 6b: h6b(t) = h5(t) (Rx GetWave_Exists = FALSE)

6

hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t)x(t)

Reference Flow Diagram – IBIS 5.0

• Two-phased process.
Output of Init phase
convolves with stimulus to
become the input of
GetWave phase.

• Analog channel hAC(t)
participates in both Init
phase and GetWave phase.

• Use_Init_Output and Tx/Rx
GetWave_Exists branchs are
contained within local steps

h1(t) = hAC(t)

h2(t)=AMI_InitTX[h1(t)]

h3(t)=AMI_InitRX[h2(t)]

h4(t) = h3(t)*x(t)

h5(t)=AMI_GetWaveTX[h4(t)]

y(t) = h6(t)

h6(t)=AMI_GetWaveRX[h5(t)]

hAC(t) x(t)=b(t)*p(t)

7

Reference Flow Diagram – IBIS 5.0

• If Use_Init_Output = FALSE,
Init phase is bypassed

• Convolving x(t) directly with
hAC(t) without including the Tx
AMI block (Step 4) makes this
flow invalid for NLTV Tx AMI
block

h1(t) = hAC(t)

h2(t) = h1(t) = hAC(t)

h3(t) = h2(t) = hAC(t)

h4(t) = hAC(t)*x(t)

h5(t)=AMI_GetWaveTX[h4(t)]

y(t) = h6(t)

h6(t)=AMI_GetWaveRX[h5(t)]

hAC(t) x(t)=b(t)*p(t)
hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t)x(t)

8

Double-Counting

• The double-counting issue was originated from the fact that
the output of the init phase serves as input to the getwave
phase sequentially. There is some ambiguity on the definition
and functionality of input and output variables of
AMI_GetWave calls.

• Use_Init_Output was introduced to allow bypassing of
AMI_Init function calls by directly convolving the analog
channel with stimulus before calling AMI_GetWave functions.

• The reference flows become complicated when all
combinations of Use_Init_Output, GetWave_Exists must be
dealt with in a consistent manner.

9

Reference Flow - BIRD 120.1

Step 1: h1(t) = hAC(t)

Step 2: h2(t) = Tx_AMI_Init[h1(t)] = hTEI(t)*hAC(t)

Step 3: h3(t) = Rx_AMI_Init[h2(t)] = hREI(t)*hTEI(t)*hAC(t)

• Showing time-domain flow only.

Step 4: h4(t) = x(t) = b(t)*p(t)

10

TX EQ
TX

Analog
TX pkg

Channel
Interconnect

RX pkg
RX

Analog
RX EQ,

CDR

hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

x(t) y(t)

y(t)x(t)

Reference Flow - BIRD 120.1 (cont.)

hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t)x(t)

Step 5: h5(t) = gTEG[h4(t)]; (TxGE = TRUE)

Step 6a: h6a(t) = gREG[h1(t)*h5(t)]; (TxGE=TRUE;RxGE=TRUE)

Step 6b: h6b(t) = gREG[h2(t)*h5(t)]; (TxGE=FALSE;RxGE=TRUE)

• [Note]: TxGE is TX GetWave_Exists; RxGE is RX GetWave_Exists

Step 8: h8(t) = {h7a(t), h7b(t), h6c(t), h6d(t)}

Step 6c: h6c(t) = h3(t)*h4(t); (TxGE=FALSE;RxGE=FALSE)

Step 6d: h6d(t) = hREI(t)*h1(t)*h5(t); (TxGE=TRUE;RxGE=FALSE)

Step 7: h7a,b(t) = gREG[h6a,b(t)];

11

Reference Flow Diagram - Original

• Four possible combinations of Tx GetWave_Exists and Rx GetWave_Exists are:
FF,FT,TF and TT

h1(t) = hAC(t)

h2(t)=AMI_InitTX[h1(t)]

h6a= h1*h5

h3(t)=AMI_InitRX[h2(t)]

h4(t) = x(t)

h5(t) = gTEG[x(t)]

h7=gREG() Output

h6c= h3*h4h6b= h2*h4

hREI(t) = h3/h2

h6d= hREI*h1*h5

TT FT FF TF

T*

12

Reference Flow – Expanded

• This is equivalent to reference flow on previous page but easier to identify
the four branches from start to finish

Input: h1(t) = hAC(t), h4(t) = x(t)

h2=hTEI*hAC

h3=hREI*h2

gTEG[x]

Output

h2*x

gREG[h2*x]

h3*x hREI=h3/h2

hREI*hAC*gTEG[x]

gTEG[x]

hAC*gTEG[x]

gREG{hAC*gTEG[x] }

h3=hREI*h2

h2=hTEI*hAC
h2=hTEI*hAC

TTTFFF FT

13

Reference Flow – Consolidated

• Each branch contains four components of: (1) stimulus; (2)
Tx AMI; (3) analog channel; (4) Rx AMI

h1(t) = hAC(t) h4(t) = x(t)

Output

gREG[hAC*hTEI*x]

hREI*hAC*hTEI*x hREI*hAC*gTEG[x]

gREG{hAC*gTEG[x] }

TTTFFF FT

input

14

Block Diagram and Equations

• Four possible cases of Tx and Rx AMI system with analog
channel in between
– [Tx GetWave_Exists, Rx GetWave_Exists] = {FF,FT,TF,TT}

15

hTEI() hAC(t) hREI()

y(t)x(t)

FF: y(t) = hREI(t)*hAC(t)*hTEI(t)*x(t)

hTEI() hAC(t) gREG()

gTEG() hAC(t) hREI()

gTEG() hAC(t) gREG() TT: y(t) = gREG[hAC(t)*gTEG[x(t)]]

TF: y(t) = hREI(t)*hAC(t)*gTEG[x(t)]

FT: y(t) = gREG[hAC(t)*hTEI(t)*x(t)]

System Equation Expansion

TX
Getwave
_Exists

RX
Getwave
_Exsits

Case
#

Equation Step #

False False 1 y(t) = hREI(t)*hAC(t)*hTEI(t)*x(t) 1,2,3,4, 6c

False True 2 y(t) = gREG[hAC(t)*hTEI(t)*x(t)] 1,2, 4, 6b,7

True False 3 y(t) = hREI(t)*hAC(t)*gTEG[x(t)] 1, 4,5,6d[*]

True True 4 y(t) = gREG[hAC(t)*gTEG[x(t)]] 1, 4,5,6a,7

• Steps 1 and 4 obtain external input variables. They are the
input nodes in the flow and are the only common
denominators of all branches.

• Steps 2,3,5,6[abcd] and 7 can be consolidated into one
step with four branches.

• [*] computation of hREI(t) requires h2(t) and h3(t)
16

Observations

• Four branch uni-phase flow

• Flow can be mapped to system equations from input to output
for each block

• Use_Init_Output was deprecated; AMI_GetWave is always
called if GetWave_Exists = TRUE

• x(t) and hAC(t) are only processed once by AMI_Init or
AMI_GetWave, systematically eliminating the double counting
issue.

• The same reference flow applies to both LTI and NLTV AMI
blocks.

17

Init_Returns_Impulse

• Init_Returns_Impulse does not participate in the branch
selection process.

• After the deprecation of Use_Init_Output, the new flow
always calls AMI_Getwave whenever Getwave_Exists = true,
regardless of the value of Init_Returns_Impulse

• Outputs are generated by AMI_Init only if Getwave_Exists =
false and in this case, the flow always calls AMI_Init regardless
of the value of Init_Returns_Impulse

• Clarification is needed on the intended purpose, application,
interpretation of Init_Returns_Impulse, and its role in the
flow.

18

AMI_Init

• If Init_Returns_Impulse = TRUE, AMI_Init returns the
convolution of input impulse response with impulse
response of the equalization

• If Init_Returns_Impulse = FALSE, AMI_Init passes the
input to output without changing it

– the AMI block represents an all pass filter which impulse
response is the Dirac delta function with unit amplitude.

• The output can always be interpreted as the convolution
of the input with the impulse responses of the AMI block.

19

AMI_GetWave

• Only applies to time-domain flow; does not
apply to statistical flow

• Can represent either NLTV or LTI AMI blocks

• In reference flow, AMI_GetWave always has
higher precedence than AMI_Init

• Explicit relationship between output and input
may not exist

20

Double-Counting

• “there is a possibility for 'double-counting' the

equalization effects in the Tx model. To allow

for such models to work correctly, the EDA tool

can operate in one of several ways, two of which

are documented here: - not utilize the Tx

AMI_GetWave functionality, by treating the Tx AMI

model as if the Tx GetWave_Exists was False.”

• Clarification is needed on this statement ‘s
consistency with the reference flow

– Reference flow always selects AMI_GetWave when
GetWave_Exists=TRUE

– If this intended to be an exception to the reference flow, it
needs to be stated in the Specification

21

Conclusion

• BIRD 120.1 time-domain reference flow
effectively resolved the double-counting issue in
Specification 5.0

• Deprecation of Use_Init_Output simplified the
workflow without comprising capability.

• Reference flow is presented in an equivalent way
which might be logically easier to follow

• Inconsistencies exist between statements in BIRD
120.1 on double-counting and the reference flow

• The purpose and role of Init_Returns_Impulse in
reference flow need to be clarified

22

